

Advanced Purification of Recycled Polyolefins for High-Quality Material Recycling

We are looking for partners for a joint development of this invention and its potential applications

Low-environmental-impact process that enables the extraction of recycled polyolefins with high purity and high strength

◆ Background

In recycling of waste plastics, demand is increasing for advanced methods to recover polyolefin resins such as polypropylene (PP) and polyethylene (PE), which constitute a large portion of plastic waste. Conventional methods dissolve these plastics in hydrocarbon solvents like xylene and then precipitate the polymers using a poor solvent, but xylene poses environmental and toxicity concerns, and such solvents are costly and difficult to scale for industrial use.

◆ Description

This invention provides a novel purification process in which recycled plastics are dissolved and precipitated under mild conditions using a low-environmental-impact, versatile solvent, allowing metals and other resin contaminants to be removed and high-purity PP and PE to be recovered [Fig. 1].

➤ Processing under mild conditions

Uses low-environmental-impact solvent capable of melting polyolefin waste plastics at 135–150 °C, allowing treatment below the solvent's boiling point.

➤ Separation of PP and PE

This process enables separation of PP and PE - previously considered difficult to achieve.

➤ Recovery of high-quality recycled plastics

The recovered PP and PE exhibit approximately fivefold improvement in tensile strength compared to conventional methods, along with significantly improved purity and transparency [Fig. 2].

Figure 1: Extraction process of recycled resin

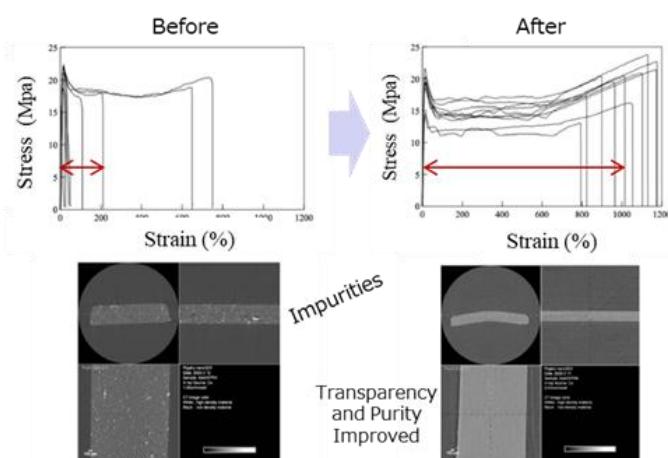


Figure 2: Tensile test results (top) and X-ray CT images (bottom) before and after purification of recycled plastic

◆ Development Status

- Lab-scale purification process established
- Improvement in tensile strength of recycled plastics verified
- Ongoing investigation for process scale-up

◆ Potential Application

- High-quality material recycling of plastics
- Reuse and purification of polyolefin resins (PP, PE)

◆ Intellectual Property

Patent pending*

*Applicant: Kyoto University

◆ Offers

- Collaborative Research
- Patent License
- Option for Patent License

◆ Contact

TLO-KYOTO Co., Ltd.

Mail: licensing_ku@tlo-kyoto.co.jp
Phone: +81-75-753-9150

Level 3, International Science Innovation Bldg., Kyoto Univ., Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan

高品質マテリアルリサイクルを実現する再生ポリオレフィン系樹脂の精製方法

ライセンス契約を受けていただき 本発明の実用化を目指していただける企業様を求めます。

低環境負荷プロセスで、高純度かつ高強度な再生ポリオレフィンを抽出可能にしました

◆背景

廃プラスチックの再利用において、使用量の多くを占めるポリプロピレン（PP）やポリエチレン（PE）などポリオレフィン系樹脂の分離・回収技術の高度化が求められています。従来は、キシレンなどの炭化水素油に溶解し、そこに貧溶媒を加えて析出させる方法が用いられてきました。しかし、キシレンは環境負荷や毒性の問題があり、加えて炭化水素油のコストや生産性の面でも実用上の課題があります。

◆発明概要と利点

本発明は、温和な条件下でリサイクルプラスチックを低環境負荷かつ汎用的な溶媒に溶融・析出させ、金属や異種樹脂を除去して高純度なPPおよびPEを抽出する新しい精製プロセスです【図1】。

➤ 温和な条件で処理可能

135~150°Cでポリオレフィン系廃プラスチックが溶融する低環境負荷の溶媒を用い、沸点以下の温度で精製処理が可能です。

➤ PPとPEの分離が可能

融点の差を利用することで、従来困難であったPPとPEの分離を実現します。

➤ 高品質な再生プラスチックの回収

再生PPおよびPEは、従来法に比べ引張強度が約5倍に向上し、純度・透明度も大幅に改善しました【図2】。

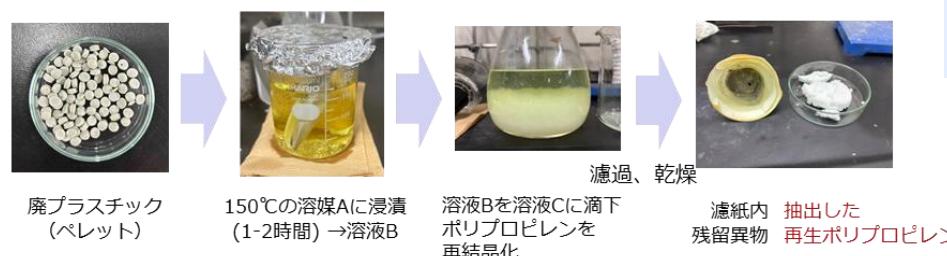


図1. 再生樹脂の抽出プロセス

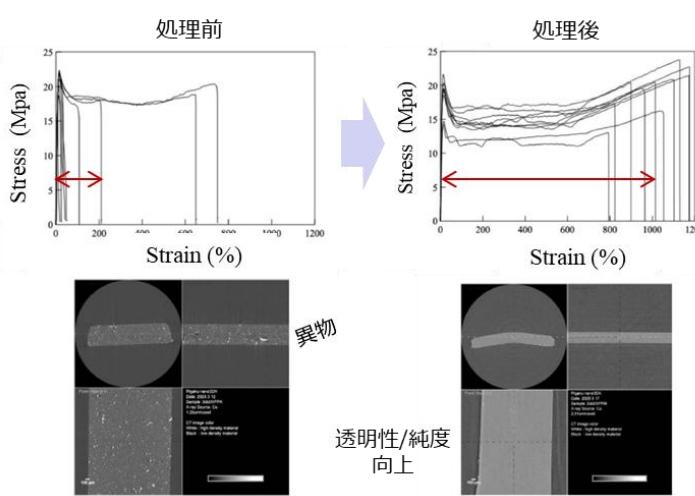


図2. 再生プラスチック精製処理前後の引張試験結果（上）とX線CT画像（下）

◆開発段階

- ・ラボスケールにて高純度再生樹脂の抽出プロセスを確立済み
- ・引張強度向上を実験的に検証済み
- ・大容量処理プロセスのスケールアップを検討中

◆適応分野

- ・プラスチックの高品質マテリアルリサイクル
- ・ポリオレフィン系樹脂（PP,PE）の再資源化

◆希望の連携形態

- ・特許実施許諾
- ・オプション契約
- ・共同研究

◆お問い合わせ先

京都大学産学連携担当

株式会社TLO京都

〒606-8501

京都市左京区吉田本町

京都大学国際科学イノベーション棟3F

(075)753-9150

licensing_ku@tlo-kyoto.co.jp